Palmitoylation of CB1 receptor finely tunes its interaction with G proteins

Monica Simonetti^a, Sergio Oddi^b, Jana Selent^c, Mauro Maccarrone^{d,e*} and Enrico Dainese^{a,d*}

 ^aFaculty of Biosciences, University of Teramo, Teramo, 64100, Italy.
^bFaculty of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy.
^cBiomedical Informatics (GRIB-IMIM), University of Pompeu Fabra, Barcelona, Spain.
^dEuropean Center for Brain Research, Santa Lucia Foundation I.R.C.C.S., Rome, Italy.
^eCenter of Integrated Research, Campus Bio-Medico University of Rome, Italy.
*Equally senior authors e-mail: edainese@unite.it

Keywords: CB₁, palmitoylation, membrane and G proteins interactions.

We previously demonstrated that CB_1 receptor is palmitoylated at cysteine 415, and that such a posttranslational modification affects many aspects of its biological activity, including association with the plasma membrane, segregation within lipid rafts, signal transduction and coupling to specific G proteins [1]. In this study, we combined computational and experimental approach in order to address the structural reasons and the molecular mechanisms at the basis of these features of CB₁ receptor. We built the three-dimensional model of CB₁ receptor based on the sequence alignment with the A_{2A} adenosine receptor in the activated state (PDB code: 3OAK), and embedded it within a POPC/cholesterol membrane bilayer. In parallel we conducted experiments of co-immunoprecipitation, and assessed the physical association of the wild-type and the mutated (*i.e.*, non-palmitovlable) receptors with distinct G proteins. All experiments were run in the presence or absence of CP55940, a synthetic agonist of CB₁ receptor. Our data show that after 120 ns of MD simulation the non-palmitoylated active form of CB1 receptor is unstable, and is converted into the inactive form. Instead, the palmitovlated receptor maintains its conformation in an active-like state. Experimental data demonstrate that the non-palmitoylable CB_1 receptor, although retaining its ability to bind to G_{ui2} protein, was no longer able to activate it upon stimulation with CP55940. Taken together, our results suggest that palmitoylation of CB_1 seems to anchor the H8 in a position which stabilizes the receptor active form, finely tunes its interaction with G proteins, and might serve as a signal for its subcellular targeting.

[1]S. Oddi et al., British Journal of Pharmacology. (2012) 165, 2635-2651.

[2]F. Xu et al., Science. (2011).

[3]A. Sali et al., J.Mol.Biol. (1993) 234(3):779-815.

[4]J. Selent et al., PLoS Comput. Biol [Internet]. (2010) [cited 2011 May 4]; 6 (8). Available from: http://www.ncbi.nlm.nih.gov/pubmed/20711351.

[5]M. J. Harvey et al., Journal of Chemical Theory and Computation. (2009) 5 (6):1632-1639.

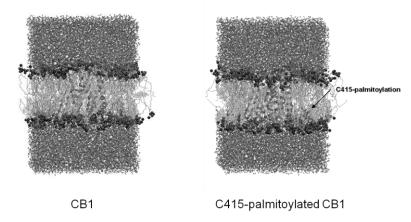


Figure 1. Three-dimensional model of CB_1 receptor (ribbon) based on the sequence alignment with the A_{2A} adenosine receptor ($A_{2A}AR$) in the activated state [2] (PDB code: 3QAK), and embedded within a POPC/cholesterol membrane bilayer. The initial three-dimensional model of CB_1 receptors was built using the MODELLER software [3], and refined by 40 ns molecular dynamics simulation according to an earlier described protocol [4] with the ACEMD software [5]. Afterwards, the refined CB_1 model was subject to 100 ns production run.

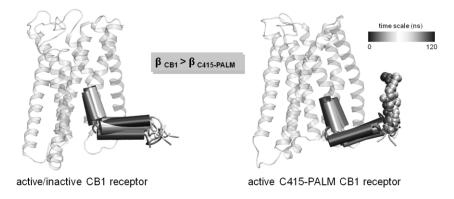


Figure 2: The image shows the dynamic properties of H8 during the 120 ns as superimposition of H8 over time whereas red 0 ns and blue 120 ns. Angle between TM7 and 8 (here called β) differs between CB₁ and C415-PALM CB₁. C415-palmitoylation seems to anchor the H8 in a position which stabilizes the complete receptor in its active form (e.g. ionic lock and TM5-7).