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The seminal paper "Neural Networks and physical systems with emergent collective computational abilities" by John Hopfield (1982) and its 
statistical mechanical treatment by Amit, Gutfreund and Sompolinsky (1985) still play as "harmonic oscillators"  in Artificial Intelligence: crucially, in 

their picture, "associative memory" emerges as a collective feature of neurons. It showed how, using the mean- field approximation, every  neuron 

interacts with all the others in the networks in order  to perform a ``serial processing'', namely it is able to retrieve one pattern of information per time. 
The main limitation oft he mean-field approximation is that it does not take into account the mutual distance between the elements in the network, but 

it has been clarified that in real-world networks (for  example the brain network) the elements interact each other as strongly as their distance is lower. 

This presentation aims to show how, overcoming the mean field approximation, introducing the hierarchical structure on the network, and showing 
how this permits to  obtain a structure able to perfom both serial and parallel processing. 

We start from the most famous hierarchical model, Dyson’s Hierarchical Model (or DHM) [1], is built up recursively, starting from a couple of nodes, 

linked with the same strength, and then creating an identical copy of the existing dimer, and connecting them with weaker bonds.  Iterating this 
procedure, one creates at every step an identical copy of the existing structure, and set up the new links. The resulting network has two features: the 

first one is that two nodes connected at the d-th step of the algorithm are considered at distance d (so one can define a matrix, whose elements are the 

distances between nodes), and the second one is that links that connect nodes at distance d have stronger weight than links connecting nodes at 
distance d=d+1, …, K, with K the total number of steps of the procedure (see Fig. 1). First, we approach these systems à la Mattis, by thinking at the 

Dyson model as a single-pattern hierarchical neural network. One step forward, we extend this scenario toward multiple stored patterns by 

implementing the Hebb prescription for learning within the couplings. This results in a Hopfield-like networks constrained on a hierarchical topology, 
for which, restricting to the low storage regime (where the number of patterns grows at most logarithmical with the amount of neurons) we give an 

explicit expression of its mean field bound and of the related improved bound. Our main finding is that embedding the Hebbian rule on a hierarchical 

topology allows the network to accomplish both serial and parallel processing (see Fig 2). By tuning the level of fast noise affecting it, or  triggering 
the decay of the interactions with the distance among neurons, the system  may switch from sequential retrieval to multitasking features and vice 

versa. However, as these multitasking capabilities are basically due to the vanishing “dialogue” between spins at long distance, such an effective 

penury of links strongly penalizes the network's capacity, which results bounded by the low storage [2], [3], [4].  

These networks display a richer phase diagram than their classical counterparts. In particular, these networks are able to perform serial processing (i.e. 

retrieve one pattern at a time through a complete rearrangement of the whole ensemble of neurons) as well as parallel processing (i.e. retrieve several 

patterns simultaneously, delegating the management of different patterns to diverse communities that build network, see Fig 1).  The tune between the 

two regimes is given by the rate of the coupling decay and by the level of noise affecting the system. The price to pay for those remarkable 

capabilities lies in a network's capacity smaller than the mean field counterpart, thus yielding a new budget principle: the wider the multitasking 

capabilities, the lower the network load and vice versa. This may have important implications in our understanding of biological complexity. 
One step forward, we analyzed also how many patterns the DHM arrives to retrieve. In fact, applying the same arguments used to show its capability 

to perform parallel processing, we showed that these networks have key motifs: in particular, we consider the dimer, i.e., the prototype of a loop-less 

reticular animal, and the square, i.e., the prototype of a loopy reticular animal, and we check whether magnetic configurations where spins associated 
to these motifs are misaligned with respect to the bulk are stable [5]. Not surprisingly, while the formers is found to be always unstable (i.e. there is no 

value of the tunable parameters defining the model that allows its stability), the latter has a range of stability. It is worth noting, however, that -as 

these motifs are by definition not-extensive (i.e. their sizes do not scale with the system size) - nor do they contribute to the model free energy in the 
thermodynamic limit, neither are they expected to be stable whenever a finite-amount fast noise is applied on the system. As a last remark we note 

that the Dyson model implies a modular architecture of the embedding structure and the reason for the stability of its loopy motifs lies exactly in the 

intrinsic modularity of the system: remarkably, modularity plays a major role even in real biological networks exactly those where the presence of 
motifs is expected. 
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Figure 1. Schematic representation of the hierarchical topology where the associative network insists. 

Circles represent Ising neurons (N = 16 in this shapshot) while links are drawn with different 

thickness mimicking various interaction strengths: The thicker the line, the stronger the link.

  
Figure 2. Example of parallel retrieval of patterns in a Hierarchical Hopfield Network 
with K=4 and N=16 total number of neurons. 

 

 


